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Estimation of Globular Protein Secondary Structure from Circular 
Dichroism+ 
Stephen W. Provencher* and Jurgen Glockner 

ABSTRACT: A new method is developed in which a circular 
dichroism (CD) spectrum is analyzed directly as a linear 
combination of the CD spectra (from 190 to 240 nm) of 16 
proteins whose secondary structures are known from X-ray 
crystallography. This avoids the dilemma encountered in 
previous methods of trying to define single reference CD 
spectra that were supposed to characterize such broad and 
variable classes as helix, /3 sheet, /3 turn, and “remainder”. It 
also permits a more accurate and flexible analysis. The usual 
instability in using so many parameters is automatically 

c D 1  is a convenient and widely used method for studying 
the conformations and conformational changes of globular 
proteins in solution. The usual procedure for estimating 
secondary structure composition is to approximate y(A), the 
mean residue ellipticity of the protein at wavelength A, simply 
by a linear superposition of a small set of Nyreference spectra, 
ri(A), each of which is supposed to be characteristic of a 
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controlled by a simple constrained statistical regularization 
procedure (similar to ridge regression). Sixteen tests were 
made by removing 1 spectrum at a time from the set of 16 
and analyzing it in terms of the other 15. The product moment 
correlation coefficients between the computed fractions of 
helix, 0 sheet, /3 turn, and remainder and the fractions from 
the X-ray data were 0.96,0.94,0.31, and 0.49, respectively. 
Thus, the helix and ,%sheet accuracy is very good. (The 
corresponding values calculated by a previous method with four 
reference spectra were 0.85, 0.25, -0.31, and 0.46.) 

particular conformational class: 
Nr 

wheref;, is the fraction of residues in class i ,  and the rkA) values 
are previously determined from CD spectra of model poly- 
peptides (Greenfield et al., 1967) or globular proteins (Saxena 
& Wetlaufer, 1971; Chen et al., 1972) whose secondary 

’ Abbreviation used: CD, circular dichroism. 
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structures are known. The classes helix, @ sheet, and remainder 
(where remainder means everything not belonging to the other 
classes) have been most often used. Improved accuracy has 
been obtained by introducing an empirical chain length de- 
pendent factor for the helix spectrum (Chen et al., 1974) by 
adding one (Chang et al., 1978) or three (Brahms & Brahms, 
1979, 1980) P-turn classes and by splitting @ sheet into parallel 
and antiparallel classes (Bolotina et al., 1979). 

It is well-known, however, that no single reference spectrum 
can accurately represent all members of any of these broad 
and somewhat vaguely defined classes; conformations in 
globular proteins deviate significantly from the ideal model 
forms. In addition, the mean residue ellipticity depends on 
chain length and number of strands in the /3 sheet, and the 
contributions of nonpeptide chromophores have been neglected. 
It is therefore not surprising that the estimates of thefvalues 
are sometimes very unreliable [see Chang et al. (1978) for a 
detailed discussion of the above problems]. On the other hand, 
it is clear that attempting to take all these factors into account 
would involve so many parameters that the usual least-squares 
estimates of thefvalues would be hopelessly unstable to ex- 
perimental error. Defining all the reference spectra would also 
be problematic. 

We thus have the dilemma, common in experimental studies 
of complex biochemical systems, of choosing between an in- 
adequate (but stable) model and an unstable (but more re- 
alistic) one. We get around this by using a simple constrained 
regularization procedure that yields solutions stable to ex- 
perimental error even when there are many parameters. This 
allows us to analyze a CD spectrum directly as a linear com- 
bination of 16 CD spectra of proteins of known secondary 
structure. We thus completely avoid the problem of defining 
reference spectra and have a more flexible and accurate 
analysis in terms of actual protein spectra. We test this method 
and compare it with a method using reference spectra. 

Methods 
We analyze the CD spectrum of a protein as a sum of N y  

CD spectra, Rj(A), of proteins whose structures are known 
from X-ray crystallography: 

N7 

Y ( X )  = CyjRj(X) (2) 
j= 1 

If we can determine the y values, then we immediately have 
the f values: 

N, 

f; = C y j F j i  i = 1, ..., N, 
j =  1 

(3) 

where Fji is the fraction of residues of protein j in confor- 
mational class i. The F values are obtained from the X-ray 
structures, and we are therefore assuming that the R(h) values 
[but not necessarily y (  A)] were measured under conditions 
where the solution and crystallographic secondary structures 
were the same. 

The y values are determined from the Ny measured mean 
residue ellipticities, Y & s d ( X k ) ,  by the criterion 

with the obvious constraints 
NJ 
Cf, = 1 ( 5 )  

fi 2 0 i = 1, ..., NJ ( 6 )  
i= 1 

For a given a, eq 2-6 are solved by using a quadratic pro- 
gramming procedure (Lawson & Hanson, 1974; Provencher, 
1979). When a = 0, we get the ordinary constrained least- 
squares solution, which is likely to be poor in our case where 
N y  is too large for the data to accurately determine so many 
y values. When a > 0, the second term on the left of eq 4, 
the regularizor, tends to stabilize the solution by keeping each 
y j  small (i.e., near l / N J  unless the corresponding R,(y) 
happens to have components that fit y(X) well and therefore 
significantly reduce the first term on the left. In this way, we 
have a very flexible but stable model that can adapt itself to 
the data by selecting from the large number of possible CD 
components the ones that match the data best. This is dis- 
cussed more precisely under Appendix. 

A general Fortran regularization package has been devel- 
oped and also applied to the analysis of polydispersity with 
quasi-elastic light scattering (Provencher et al., 1978) and 
chemical relaxation spectra (Provencher & Dovi, 1979). A 
user-oriented version will be available on request. The method 
is completely automatic and objective in that the only input 
required is y(X); all other decisions (e.g., the choice of a) are 
made by the program. 

For the R(X) values, we used the CD spectra, available from 
Chang et al. (1978), of 16 proteins (1-16 in Table I) in 
aqueous solutions (pH 7.0) in 1-nm intervals from 190 to 240 
nm. Subtilisin BPN’ and thermolysin ( 1  7 and 18 in Table I) 
were not used for reasons given in the next section. 

Results 
We made 16 tests of the method by removing one CD 

spectrum at a time from the set of 16 R(X) spectra and ana- 
lyzing it as the y(X) in eq 2 in terms of the other 15 (Le., with 
N y  = 15 and Ny = 51). The resultantfvalues are shown as 
method 1 in Table I. Method 2 is that of Chang et al. (1978) 
with four reference spectra and the constraints in eq 5 and 6. 
Our results are better than theirs because we did not use 
spectra 1 ,  3, 6, 17, and 18 to compute the reference spectra 
for the &sheet, @-turn, and remainder classes whereas they 
did not use spectra 1 ,  3, and 6. However, method 2 does use 
the spectrum and the (ordinarily unknown) X-ray F values 
of the protein being analyzed to compute the reference spectra. 
Thus (except for proteins 1,3,6,  17, and 18), method 2 is not 
a fair test because it biases the computedfvalues toward the 
X-ray values. (If we did this with method 1, we would obtain 
exact agreement with the X-ray values.) Therefore, we can 
only compare method 1 with method 2a, which is method 2 
except that the spectrum being analyzed is not used to compute 
the reference spectra. 

Table I1 summarizes the results of the 16 tests. The product 
moment correlation coefficients [see, e.g., Chang et al. (1978)l 
can range between 1.0 and -1.0, with 1.0 meaning perfect 
correlation between the CD and the X-ray f values and 0.0 
meaning no correlation. Thus, method 1 yields very good helix 
and @-sheet accuracy. 

The flexibility of method 1 is especially clear in the analysis 
of the CD spectrum of concanavalin A, which is about 51% 
fl  sheet and only 2% helix. Chang et al. (1978), as well as 
Bolotina et al. (1979), obtained their worst results for this 
protein (see Table I) and were not able to fit the spectrum (see 
Figure 1). We obtained goodfvalues and a good fit because 
CY in eq 4 automatically adapted to the apparent difficulty of 
fitting this spectrum and became especially small (see Ap- 
pendix). 

Many combinations of the following modifications were 
tried. (1) The empirical corrections of Chang et al. (1978) 
for the dependence of the mean residue ellipticity on Ti, the 
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Table I: Comparison of Secondary Structure Compositions Estimated from CD with X-ray Values 
100 x p  100 x f 

no. proteinb methodC H p t R no. protein method H p t R 

adenylate kinase 

carboxypeptidase 

a-chymotr ypsin 

concanavalin A 

cytochrome c 

elastase 

insulin 

lactate dehydrogenase 

lysozyme 

X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 

54 12 
44 15 
45 32 
45 32 
37 15 
43 15 
40 19 
32 44 
9 34 
9 29 
6 50 
6 50 
2 51 
8 41 

20 67 
35 0 
39 0 
33 9 
42 7 
41 15 

7 52 
4 49 
0 45 
0 45 

51 24 
49 23 
45 30 
45 27 
45 24 
40 22 
42 27 
43 26 
41 16 
45 21 
32 30 
30 35 

19d 
20 
5 
5 

26 
25 
28 
17 
34 
22 
3 
3 
9 

15 
8 

39 
24 
17 
26 
22 
26 
14 
8 
8 

12 
27 
15 
17 
6 

13 
9 

10 
23 
26 
7 
6 

lSd 
21 
18 
18 
22 
16 
13 
7 

23 
40 
42 
42 
38 
36 

6 
26 
37 
41 
25 
21 
15 
32 
47 
47 
13 
0 

10 
11 
25 
26 
22 
22 
20 

8 
31 
30 

10 

11 

12 

13 

14 

15 

16 

17 

18 

myoglobin 

nuclease 

Papain 

parvalbumin 

ribonuclease A 

ribonuclease S 

trypsin inhibitor 

subtilisin BPN' 

thermolysin 

X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 
X-ray 
1 
2 
2a 

7.9 0 
86 0 
80 0 
80 1 
24 15 
32 25 
29 24 
29 26 
28 14 
27 5 
28 0 
24 0 
62 5 
58 0 
51 0 
46 0 
23 40 
26 44 
23 36 
25 29 
26 44 
25 37 
25 33 
27 24 
28 33 
21 28 
9 23 

14 0 
31 10 
15 48 
15 62 
15 62 
36 22 
28 48 
27 60 
27 60 

5 16 
0 14 
3 17 
2 17 

18 43 
14 29 
12 36 
10 34 
17 41 
31 36 
17 56 
13 63 
17 16 
0 42 

27 22 
29 25 
13 24 
11 19 
12 30 
14 32 
13 17 
16 23 
14 28 
18 32 
3 36 

23 29 
6 62 

24 62 
22 37 
18 18 
1 22 
1 22 

18 24 
21 3 
1 12 
1 12 

a Abbreviations used: f, fraction of residues in a given conformational class; H, helix; p ,  p sheet; t ,  p turn; R ,  remainder. See Chang et al. 
(1978) for sources of the proteins, references, and the determination of thef'values from the X-ray results. Methods used: (1) this paper; 
(2) constrained method of Chang et al. (1978); (2a) method 2 but not using the spectrum being analyzed t o  determine the reference spectra. 
See text for details. - For adenylate kinase, the correction of Chang et al. (1978) for the net contribution of p turns was not available. 

Table 11: Correlation Coefficients and Root-Mean-Square 
Deviations between CD Estimates and X-ray Values of the 
f Values for 16 Proteins 

correlation coefficient 100 x rmsa 
method H 13 t R H D t R  

1 0.96 0.94 0.31 0.49 5 6 10 11 
2 0.92 0.83 0.23 0.37 8 11 11 16 
2a 0.85 0.25 -0.31 0.46 11 21 15 15 

a rms, root-mean-square deviations of thef values from X-ray 
values. See also footnotes to Table I. 

mean number of residues per helical segment, were tried. 
When ii was made a free parameter, the solution became 
unstable, with ii usually becoming unrealistically large or small. 
When ii was fixed at 10, the results became worse than with 
no ii. With the (somewhat artificial) constraint 8 I ii I 14, 
the improvements were minor. (2) Both functions of Chang 
et al. (1978) were used as a fixed helix reference spectrum, 
with slightly worse results. (3) For X I 200 nm or X I 210 
nm, the data were given lower statistical weights in eq 4 or 
completely discarded. The results were quite insensitive to this. 
(4) The X-ray F values from the automatic algorithm of Levitt 
& Greer (1977) were used for the helix and B sheet. The 
improvements were small. ( 5 )  To test the sensitivity of the 

c 

I I I I 1 
200 220 240 

WAVELENGTH (nm) 
FIGURE 1 : Fit to the mean residue ellipticity data (-) on concanavalin 
A with method 1 of this paper (+) and with reference spectra methods 
2 (-e) and 2a (---). See the text for details. 

solution to the biasing effect of the second term in eq 4, 1/N, 
was replaced with zero; Le., the y values were biased toward 
zero rather than 1/N, (see Appendix). The first two signif- 
icant figures of the y and f values did not change. None of 
these modifications were adopted because any improvements 
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were small, and the extreme simplicity of method 1 seemed 
an advantage. 

Two modifications were adopted, however. First, two rather 
extreme outliers were arbitrarily changed to smooth the R(X) 
values, R,,(202) from 4170 to 1170 deg cm2 dmol-I and 
RI5(231) from -3854 to -2854 deg cm2 dmol-’. The im- 
provements in the results were minor, but we intend eventually 
to smooth all the R(h) values anyway, to make interpolation 
to other wavelengths easier. 

The second modification made was that the CD spectra of 
subtilisin BPN’ and thermolysin were not used as R(X) spectra. 
Initially, when we used all 18 spectra, the correlation coef- 
ficients were only 0.86,0.07, 0.42, and 0.13 for helix, @ sheet, 
0 turn, and remainder, respectively. We then systematically 
removed nearly 100 combinations of CD spectra from the set 
of R(X) spectra. Usually, the results became slightly worse. 
Only the removal of thermolysin and particularly of subtilisin 
BPN’ led to dramatic improvements. When the &sheet X-ray 
F of 0.17 (and hence a remainder F of 0.30), as quoted by 
Chou & Fasman (1974), was used for subtilisin BPN’, instead 
of the F values in Table I, the results were only slightly im- 
proved. Another possibility is that the CD spectrum itself is 
wrong; it differs significantly from the subtilisin Novo CD 
spectra of Brahms & Brahms (1979,1980), although the two 
X-ray structures are very similar (Drenth et al., 1972) and 
have identical amino acid sequences. [Unfortunately, it ap- 
pears that the wrong figure has been used in one of the papers 
by Brahms & Brahms (1979, 1980) since their two spectra 
are quite different.] We do not have a second CD spectrum 
of thermolysin for comparison. Colman et al. (1972) note that 
many of the helices in thermolysin are quite distorted, but this 
is true to a certain extent in nearly all globular proteins, and 
it is difficult to quantify this effect. In view of the reassuring 
stability of the method to all other modifications, a clear 
explanation of the anomalous sensitivity of the results to the 
CD spectra or F values of these two proteins would be espe- 
cially desirable. 

Discussion 
The greatly improved results (see Tables I and 11) over 

previous methods are due to two main advantages, the flexi- 
bility of the model with the automatically adjusted a in eq 4 
and the freedom from having to define reference spectra 
characteristic of conformational classes. The latter means that 
the accuracy of the f value for one class can be quite inde- 
pendent of the (e.g., lower) accuracy of thefvalues of other 
classes. We analyze a spectrum directly as a sum of protein 
spectra in eq 2, independent of any classification system 
(except that the X-ray F values appear indirectly in the con- 
straints in eq 6, but these are not often active). The classi- 
fication in terms of the F values is only imposed afterward in 
eq 3, and here the f value of a class is simply a sum over the 
F values of the same class. This explains why the excellent 
helix accuracy in Tables I and I1 is not affected by the errors 
in the F values for the other forms, which are more difficult 
to classify unambiguously from X-ray data. 

This also means that there is no problem if one class has 
members with very different CD spectra. We could just as 
well have combined the Fj3 (0 turn) and Fj4 (remainder) and 
analyzed for helix, @ sheet, and remainder. Similarly, com- 
bining parallel and antiparallel 0 sheets or the 15 types of P 
turns causes no difficulty whereas it obviously does with the 
previous methods that use reference spectra. The only dif- 
ference is the number of constraints in eq 6 .  Since these 
constraints help stabilize the analysis, it is reasonable to use 
any classes for which the X-ray F values can be unambiguously 

and accurately assigned, even if they are so weakly represented 
that they are best combined with other classes after the 
analysis. 

In order for the models in eq 1 or 2 to be adequate (i.e., 
complete), the r(X) or R(X) spectra would have to contain all 
the type.s of CD components that the measured spectrum, y(h),  
does. The estimation of a large set of reference spectra is 
difficult and error prone. For example, the P-turn reference 
spectrum of Chang et al. (1978) bears little resemblance to 
any of the three of Brahms & Brahms (1980), who had to 
arbitrarily multiply one of their reference spectra by 0.5 to 
account for the higher regularity of their synthetic polypeptide 
compared to globular proteins. It therefore seems natural to 
avoid the estimation of reference spectra altogether and an- 
alyze a protein CD spectrum directly as a sum of other protein 
CD spectra. It is much easier to find a collection of R(X) 
spectra of proteins of known secondary structure that is varied 
enough to make eq 2 nearly complete. 

What our method is not immune to are nonlinear effects 
like the dependence of the mean residue ellipticity on the helix 
chain length or the @-sheet length or width (Woody, 1969; 
Madison & Schellman, 1972). The fact that including an 
empirical chain-length dependence for the helix had little effect 
probably means that there are other just as serious effects being 
ignored. Furthermore, the number of linear effects that can 
be analyzed is determined by the effective rank of the noisy 
matrix of the R(h) values, the extent to which the constraints 
in eq 5 and 6 can stabilize the analysis, and the accuracy of 
the y ( h )  data. Thus, although all the types of nonpeptide 
contributions can in principle be combined in the remainder 
class, the ultimate accuracy attainable with any CD method 
will be limited by these contributions, as well as by the non- 
linear effects and the wide range of distorted conformations 
in globular proteins. Success will partly hinge on the 
“averaging out” of these extra effects over the large number 
of residues so that they are not very different from those in 
some of the other reference proteins. This may not be the case 
for proteins (particularly small polypeptides) with very peculiar 
amino acid compositions and with structures very different 
from all the reference proteins. 

The susceptibility to this last problem should decrease as 
the number, and especially as the variety, of the reference 
proteins increases (Le., as N7 increases). We observed a 
gradual but clear trend toward decreased accuracy as N y  was 
decreased, and we expect the converse to hold. Variety should 
be especially important. For example, when ribonuclease A 
was analyzed, 50% of its y(X) in eq 2 was the R(X) of ribo- 
nuclease S, whose y = 0.84 was 5 times larger than any of 
the other y values; the converse was also true. Thus, a ref- 
erence protein with a structure similar to the one being ana- 
lyzed tends to be automatically selected with a large y. The 
ability of the method to perform a stable analysis with a large 
and varied set of R(X) spectra is therefore very important. A 
possible new R(h) can easily be screened with the same pro- 
cedure that we used for Tables I and 11. If the new R(X) leads 
to worse accuracy (as thermolysin and subtilisin BPN’ did), 
it should not be used. The accuracy should also improve by 
increasing the accuracy of the CD spectra and by extending 
the spectra down to about 165 nm (Brahms & Brahms, 1979, 
1980). 

A consistent classification system for computing the F values 
from the X-ray atomic coordinates is essential. We also ob- 
tained good results for the helix and @ sheet by using the F 
values of Levitt & Greer (1977) for those classes, although 
these F values for 0 sheet were often much larger than those 
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of Chang et al. (1978). This means that internal consistency 
is of prime importance. A version of the algorithm of Levitt 
& Greer (1 977) tuned to the needs of CD could be very useful. 

Finally, it should be noted that we had the advantage of 
another internal consistency: the CD spectra of the protein 
being analyzed and of the reference proteins came from the 
same laboratory. Obviously, careful calibration of the in- 
strument and perhaps a test spectrum of one of the reference 
proteins will be important. 
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Appendix 
Justification and Use of Eq 4. Ordinary least squares (eq 

4 with a = 0) is widely used because the Gauss-Markov 
theorem (Silvey, 1975) shows that, of all linear unbiased 
methods, it is the best in the sense that it yields the y values 
with the minimum expected variance from the true values. 
Nevertheless, a large N y  or nearly linearly dependent R(X) 
spectra in eq 2 can make the least-squares estimates hopelessly 
unstable to experimental error. In view of the optimal prop- 
erties of least squares, it is widely believed that the only way 
of reducing this instability is to reduce N7, even at the expense 
of having a totally inadequate model. However, Hoerl & 
Kennard (1970) have shown that there always exists a linear 
estimator (analogous to a > 0 in eq 4) that yields y values 
with smaller variance than least squares. These estimates are 
biased (Le., the expectation values of the y values are not the 
true values) and therefore are not covered by the Gauss- 
Markov therorem. 

We can get a clearer justification of eq 4 with some addi- 
tional assumptions that are reasonable for CD data. Generally, 
we have no a priori knowledge of the composition of y(X) in 
terms of the R(X) values in eq 2. It is therefore reasonable 
to assign the same (unknown) a priori probability distribution 
to each of the y values. (If we did not, then we would be giving 
an unjustified preference to some of the y values.) This is the 
principle of exchangeability (Lindley & Smith, 1972). We 
take the mean of this distribution to be 7 = 1/N7 since, from 
eq 3 and 5, the y values must sum to 1. If we further assume 
that the y values and the yobsd(X) values are normally dis- 
tributed, then the Bayesian estimator (Lindley & Smith, 1972) 
for the y values is just eq 4 with a = u:/u:, where u? and 
a: are the variances of the y and ya(X) values, respectively. 
Even without assuming normality, eq 4 is formally just or- 
dinary least squares with our prior assumptions about the mean 
and variance of the y values added as “data”. 

In practice, we do not know u,’/u,’ a priori, and there have 
been many procedures proposed for automatically choosing 
the optimum a during the analysis (Draper & Van Nostrand, 
1979). When a! = 0, the variance of the fit to the data (the 
first term in eq 4) is minimal, but the y values are generally 
unreliable because their instability to the experimental errors 
is maximal. As a! increases, the variance of the fit mono- 
tonically increases, and the effective number of degrees of 
freedom (Provencher, 1979), which is analogous to the number 
of free parameters in an ordinary least squares, monotonically 
decreases. Usually, the variance of the fit increases slowly at 
first and then rapidly as a! becomes so large and the degrees 
of freedom so few that the model is no longer flexible enough 
and the y values are too strongly biased toward 7 = l/iVy. 
The aim is to choose the a that represents the optimum com- 
promise between flexibility and stability, thereby yielding the 
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best y values. We use a rough hypothesis test on the relative 
increase of the variance of the fit as a increases (Provencher, 
1979) to choose a. The automatic choice of a is very im- 
portant; a tends to adapt itself to the CD spectrum being 
analyzed. For example, if the data are especially precise or 
the spectrum requires more degrees of freedom to be ade- 
quately represented by eq 2, then a smaller a! is automatically 
chosen. The method also produces rough confidence regions 
for the f values (Provencher, 1979). 

In this appendix, we have ignored some complications that 
were not essential to the discussion or conclusions, e.g., the 
constraints in eq 5 and 6 and the experimental errors in the 
R(X) values. Also, as required by the Gauss-Markov theorem, 
a weighting matrix can be introduced into eq 4 to account for 
correlations or unequal variances in the experimental errors. 
Similarly, we can incorporate extra a priori information by 
weighting the individual terms in the second sum in eq 4. For 
example, if we knew that the protein being analyzed (e.g., 
ribonuclease A) was structurally similar to some of the ref- 
erence proteins (e.g., ribonuclease s), then we could give these 
y values more freedom by weighting the terms more lightly 
in the second sum, or, if there were only one such protein, we 
could perhaps increase its 7. However, this would be usually 
difficult to do objectively and quantitatively, and we have not 
done it here. We have found that the y values of proteins 
structurally similar to the one being analyzed automatically 
tend to be large anyway, without any added information. 
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