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Estimation of Globular Protein Secondary Structure from Circular

Dichroism'

Stephen W. Provencher* and Jiirgen Glockner

ABSTRACT: A new method is developed in which a circular
dichroism (CD) spectrum is analyzed directly as a linear
combination of the CD spectra (from 190 to 240 nm) of 16
proteins whose secondary structures are known from X-ray
crystallography. This avoids the dilemma encountered in
previous methods of trying to define single reference CD
spectra that were supposed to characterize such broad and
variable classes as helix, 8 sheet, 8 turn, and “remainder”. It
also permits a more accurate and flexible analysis. The usual
instability in using so many parameters is automatically

(jDl is a convenient and widely used method for studying
the conformations and conformational changes of globular
proteins in solution. The usual procedure for estimating
secondary structure composition is to approximate y(A), the
mean residue ellipticity of the protein at wavelength A, simply
by a linear superposition of a small set of Ny reference spectra,
ri(2), each of which is supposed to be characteristic of a
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controlled by a simple constrained statistical regularization
procedure (similar to ridge regression). Sixteen tests were
made by removing 1 spectrum at a time from the set of 16
and analyzing it in terms of the other 15. The product moment
correlation coefficients between the computed fractions of
helix, B sheet, 8 turn, and remainder and the fractions from
the X-ray data were 0.96, 0.94, 0.31, and 0.49, respectively.
Thus, the helix and S-sheet accuracy is very good. (The
corresponding values calculated by a previous method with four
reference spectra were 0.85, 0.25, -0.31, and 0.46.)

particular conformational class:

Ny
y(A) = i_zlfm(A) (1

where f; is the fraction of residues in class i, and the r()) values
are previously determined from CD spectra of model poly-
peptides (Greenfield et al., 1967) or globular proteins (Saxena
& Wetlaufer, 1971; Chen et al.,, 1972) whose secondary

! Abbreviation used: CD, circular dichroism.
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structures are known. The classes helix, 8 sheet, and remainder
(where remainder means everything not belonging to the other
classes) have been most often used. Improved accuracy has
been obtained by introducing an empirical chain length de-
pendent factor for the helix spectrum (Chen et al., 1974) by
adding one (Chang et al., 1978) or three (Brahms & Brahms,
1979, 1980) 3-turn classes and by splitting 5 sheet into parallel
and antiparallel classes (Bolotina et al., 1979).

It is well-known, however, that no single reference spectrum
can accurately represent all members of any of these broad
and somewhat vaguely defined classes; conformations in
globular proteins deviate significantly from the ideal model
forms. In addition, the mean residue ellipticity depends on
chain length and number of strands in the 8 sheet, and the
contributions of nonpeptide chromophores have been neglected.
It is therefore not surprising that the estimates of the fvalues
are sometimes very unreliable [see Chang et al. (1978) for a
detailed discussion of the above problems]. On the other hand,
it is clear that attempting to take all these factors into account
would involve so many parameters that the usual least-squares
estimates of the f values would be hopelessly unstable to ex-
perimental error. Defining all the reference spectra would also
be problematic.

We thus have the dilemma, common in experimental studies
of complex biochemical systems, of choosing between an in-
adequate (but stable) model and an unstable (but more re-
alistic) one. We get around this by using a simple constrained
regularization procedure that yields solutions stable to ex-
perimental error even when there are many parameters. This
allows us to analyze a CD spectrum directly as a linear com-
bination of 16 CD spectra of proteins of known secondary
structure. We thus completely avoid the problem of defining
reference spectra and have a more flexible and accurate
analysis in terms of actual protein spectra. We test this method
and compare it with a method using reference spectra.

Methods

We analyze the CD spectrum of a protein as a sum of NV,
CD spectra, R()), of proteins whose structures are known
from X-ray crystallography:

N7
y(») = Zl7jRj(>‘) (2)
=

If we can determine the v values, then we immediately have
the f values:

N7
f; = .Zl‘ijji i=1,.. Nf (3)
j=

where Fj; is the fraction of residues of protein j in confor-
mational class i. The F values are obtained from the X-ray
structures, and we are therefore assuming that the R(\) values
[but not necessarily p(\)] were measured under conditions
where the solution and crystallographic secondary structures
were the same.

The « values are determined from the V, measured mean
residue ellipticities, yopa(Ax), by the criterion

N, N. 2
< X 1 .
Z [P = Yorsa(A)]* + a2 v, - ]7) = minimum
k=1 j=1 v
4)
with the obvious constraints
Ny
§f,- =1 (5)
£iZ20  i=1,., N (6)
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For a given a, eq 2-6 are solved by using a quadratic pro-
gramming procedure (Lawson & Hanson, 1974; Provencher,
1979). When a = 0, we get the ordinary constrained least-
squares solution, which is likely to be poor in our case where
N, is too large for the data to accurately determine so many
v values. When a > 0, the second term on the left of eq 4,
the regularizor, tends to stabilize the solution by keeping each
v; small (i.e., near 1/N,) unless the corresponding R/(vy)
happens to have components that fit y(A\) well and therefore
significantly reduce the first term on the left. In this way, we
have a very flexible but stable model that can adapt itself to
the data by selecting from the large number of possible CD
components the ones that match the data best. This is dis-
cussed more precisely under Appendix.

A general Fortran regularization package has been devel-
oped and also applied to the analysis of polydispersity with
quasi-elastic light scattering (Provencher et al., 1978) and
chemical relaxation spectra (Provencher & Dovi, 1979). A
user-oriented version will be available on request. The method
is completely automatic and objective in that the only input
required is y(\); all other decisions (e.g., the choice of a) are
made by the program,

For the R()\) values, we used the CD spectra, available from
Chang et al. (1978), of 16 proteins (1-16 in Table I) in
aqueous solutions (pH 7.0) in 1-nm intervals from 190 to 240
nm. Subtilisin BPN’ and thermolysin (17 and 18 in Table I)
were not used for reasons given in the next section.

Results

We made 16 tests of the method by removing one CD
spectrum at a time from the set of 16 R()\) spectra and ana-
lyzing it as the p(A) in eq 2 in terms of the other 15 (i.e., with
N, =15 and N, = 51). The resultant fvalues are shown as
method 1 in Table I. Method 2 is that of Chang et al. (1978)
with four reference spectra and the constraints in eq 5 and 6.
Our results are better than theirs because we did not use
spectra 1, 3, 6, 17, and 18 to compute the reference spectra
for the 8-sheet, 8-turn, and remainder classes whereas they
did not use spectra 1, 3, and 6. However, method 2 does use
the spectrum and the (ordinarily unknown) X-ray F values
of the protein being analyzed to compute the reference spectra.
Thus (except for proteins 1, 3, 6, 17, and 18), method 2 is not
a fair test because it biases the computed f values toward the
X-ray values. (If we did this with method 1, we would obtain
exact agreement with the X-ray values.) Therefore, we can
only compare method 1 with method 2a, which is method 2
except that the spectrum being analyzed is not used to compute
the reference spectra.

Table II summarizes the results of the 16 tests. The product
moment correlation coefficients [see, e.g., Chang et al. (1978)]
can range between 1.0 and ~1.0, with 1.0 meaning perfect
correlation between the CD and the X-ray f values and 0.0
meaning no correlation. Thus, method 1 yields very good helix
and §-sheet accuracy.

The flexibility of method 1 is especially clear in the analysis
of the CD spectrum of concanavalin A, which is about 51%
{3 sheet and only 2% helix. Chang et al. (1978), as well as
Bolotina et al. (1979), obtained their worst results for this
protein (see Table I) and were not able to fit the spectrum (see
Figure 1). We obtained good f values and a good fit because
a in eq 4 automatically adapted to the apparent difficulty of
fitting this spectrum and became especially small (see Ap-
pendix).

Many combinations of the following modifications were
tried. (1) The empirical corrections of Chang et al. (1978)
for the dependence of the mean residue ellipticity on 7, the
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TableI: Comparison of Secondary Structure Compositions Estimated from CD with X-ray Values

100 x f@ 100 x f
no. protein® method®¢ H 8 t R no. protein method H 8 t R

1  adenylate kinase Xray 54 12 19¢ 154 10  myoglobin X-ray 79 0 5 16
1 44 15 20 21 1 86 0 0 14

2 45 32 5 18 2 80 0 3 17

2a 45 32 5 18 2a 80 1 2 17

2 carboxypeptidase Xeray 37 15§ 26 22 11 nuclease X-ray 24 15 18 43
1 43 15 25 16 1 32 25 14 29

2 40 19 28 13 2 29 24 12 36

2a 32 44 17 7 2a 29 26 10 34

3 a~chymotrypsin X-ray 9 34 34 23 12 papain X-ray 28 14 17 41
1 9 29 22 40 1 27 5 31 36

2 6 S0 3 42 2 28 0 17 56

2a 6 50 3 42 2a 24 0 13 63

4 concanavalin A X-ray 2 51 9 38 13 parvalbumin X-ray 62 5 17 16
1 8 41 15 36 1 58 0 0 42

2 20 67 8 6 2 51 0 27 22

2a 35 0 39 26 2a 46 0 29 25

s cytochrome ¢ X-ray 39 0 24 37 14  ribonuclease A X-ray 23 40 13 24
1 33 9 17 41 1 26 44 11 19

2 42 7 26 25 2 23 36 12 30

2a 41 15 22 21 2a 25 29 14 32

6 elastase X-ray 7 52 26 15 15 ribonuclease S X-ray 26 44 13 17
1 4 49 14 32 1 25 37 16 23

2 0 45 8 47 2 25 33 14 28

2a 0 45 8 47 2a 27 24 18 32

7  insulin X-ray 51 24 12 13 16 trypsin inhibitor ~ X-ray 28 33 3 36
1 49 23 27 0 1 21 28 23 29

2 45 30 15 10 2 9 23 6 62

2a 45 27 17 11 2a 14 0 24 62

8 lactate dehydrogenase  X-ray 45 24 6 25 17 subtilisin BPN' X-ray 31 10 22 37
1 40 22 13 26 1 15 48 18 18

2 42 27 9 22 2 15 62 1 22

2a 43 26 10 22 2a 15 62 1 22

9 lysozyme X-ray 41 16 23 20 18 thermolysin X-ray 36 22 18 24
1 45 21 26 8 1 28 48 21 3

2 32 30 7 31 2 27 60 1 12

2a 30 35 6 30 2a 27 60 1 12

@ Abbreviations used: f, fraction of residues in a given conformational class; H, helix; §, 8 sheet; £, 8 turn; R, remainder, ¥ See Chang et al.
(1978) for sources of the proteins, references, and the determination of the f values from the X-ray results. ¢ Methodsused: (1) this paper;
(2) constrained method of Chang et al. (1978); (2a) method 2 but not using the spectrum being analyzed to determine the reference spectra.
See text for details. @ For adenylate kinase, the correction of Chang et al. (1978) for the net contribution of 8 turns was not available,

Table II: Correlation Coefficients and Root-Mean-Square
Deviations between CD Estimates and X-ray Values of the
f Values for 16 Proteins

correlation coefficient

100 X rms®
method H B t R H ¢} t R

1 096 0.94 0.31 0.49 5 6 10 11
2 0.92 0.83 0.23 0.37 8 11 11 16
2. 085 025 -031 046 11 21 15 15

@ rms, root-mean-square deviations of the f values from X-ray
values. See also footnotes to Table I.

mean number of residues per helical segment, were tried.
When 7 was made a free parameter, the solution became
unstable, with 7 usually becoming unrealistically large or small.
When 7 was fixed at 10, the results became worse than with
no 7. With the (somewhat artificial) constraint 8 < 7 < 14,
the improvements were minor. (2) Both functions of Chang
et al. (1978) were used as a fixed helix reference spectrum,
with slightly worse results. (3) For A < 200 nmor A < 210
nm, the data were given lower statistical weights in eq 4 or
completely discarded. The results were quite insensitive to this.
{(4) The X-ray F values from the automatic algorithm of Levitt
& Greer (1977) were used for the helix and 3 sheet. The
improvements were small. (5) To test the sensitivity of the

I ] T T T I

(6] x10"%(deg cm2 dmole-!)

200 220 240
WAVELENGTH (nm)
FIGURE 1: Fit to the mean residue ellipticity data (—) on concanavalin

A with method 1 of this paper (+) and with reference spectra methods
2 () and 2a (——-). See the text for details.

solution to the biasing effect of the second term in eq 4, 1/N,
was replaced with zero; i.e., the vy values were biased toward
zero rather than 1/N, (see Appendix). The first two signif-
icant figures of the v and f values did not change. None of
these modifications were adopted because any improvements
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were small, and the extreme simplicity of method 1 seemed
an advantage.

Two modifications were adopted, however. First, two rather
extreme outliers were arbitrarily changed to smooth the R(A)
values, R;4(202) from 4170 to 1170 deg cm? dmol™' and
R5(231) from -3854 to —2854 deg ¢cm? dmol™!. The im-
provements in the results were minor, but we intend eventually
to smooth all the R(A) values anyway, to make interpolation
to other wavelengths easier.

The second modification made was that the CD spectra of
subtilisin BPN’ and thermolysin were not used as R(\) spectra.
Initially, when we used all 18 spectra, the correlation coef-
ficients were only 0.86, 0.07, 0.42, and 0.13 for helix, 3 sheet,
f turn, and remainder, respectively. We then systematically
removed nearly 100 combinations of CD spectra from the set
of R(\) spectra. Usually, the results became slightly worse.
Only the removal of thermolysin and particularly of subtilisin
BPN’ led to dramatic improvements. When the $-sheet X-ray
F of 0.17 (and hence a remainder F of 0.30), as quoted by
Chou & Fasman (1974), was used for subtilisin BPN’, instead
of the F values in Table I, the results were only slightly im-
proved. Another possibility is that the CD spectrum itself is
wrong; it differs significantly from the subtilisin Novo CD
spectra of Brahms & Brahms (1979, 1980), although the two
X-ray structures are very similar (Drenth et al., 1972) and
have identical amino acid sequences. [Unfortunately, it ap-
pears that the wrong figure has been used in one of the papers
by Brahms & Brahms (1979, 1980) since their two spectra
are quite different.] We do not have a second CD spectrum
of thermolysin for comparison. Colman et al. (1972) note that
many of the helices in thermolysin are quite distorted, but this
is true to a certain extent in nearly all globular proteins, and
it is difficult to quantify this effect. In view of the reassuring
stability of the method to all other modifications, a clear
explanation of the anomalous sensitivity of the results to the
CD spectra or F values of these two proteins would be espe-
cially desirable.

Discussion

The greatly improved results (see Tables I and II) over
previous methods are due to two main advantages, the flexi-
bility of the model with the automatically adjusted « in eq 4
and the freedom from having to define reference spectra
characteristic of conformational classes. The latter means that
the accuracy of the f value for one class can be quite inde-
pendent of the (e.g., lower) accuracy of the f values of other
classes. We analyze a spectrum directly as a sum of protein
spectra in eq 2, independent of any classification system
(except that the X-ray F values appear indirectly in the con-
straints in eq 6, but these are not often active). The classi-
fication in terms of the F values is only imposed afterward in
eq 3, and here the fvalue of a class is simply a sum over the
F values of the same class. This explains why the excellent
helix accuracy in Tables I and II is not affected by the errors
in the F values for the other forms, which are more difficult
to classify unambiguously from X-ray data.

This also means that there is no problem if one class has
members with very different CD spectra. We could just as
well have combined the Fj; (8 turn) and Fj, (remainder) and
analyzed for helix, 8 sheet, and remainder. Similarly, com-
bining parallel and antiparallel 3 sheets or the 15 types of 8
turns causes no difficulty whereas it obviously does with the
previous methods that use reference spectra. The only dif-
ference is the number of constraints in eq 6. Since these
constraints help stabilize the analysis, it is reasonable to use
any classes for which the X-ray F values can be unambiguously
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and accurately assigned, even if they are so weakly represented
that they are best combined with other classes after the
analysis.

In order for the models in eq 1 or 2 to be adequate (i.e.,
complete), the 7(A) or R(A) spectra would have to contain all
the types of CD components that the measured spectrum, y(}),
does. The estimation of a large set of reference spectra is
difficult and error prone. For example, the 8-turn reference
spectrum of Chang et al. (1978) bears little resemblance to
any of the three of Brahms & Brahms (1980), who had to
arbitrarily multiply one of their reference spectra by 0.5 to
account for the higher regularity of their synthetic polypeptide
compared to globular proteins. It therefore seems natural to
avoid the estimation of reference spectra altogether and an-
alyze a protein CD spectrum directly as a sum of other protein
CD spectra. It is much easier to find a collection of R(A)
spectra of proteins of known secondary structure that is varied
enough to make eq 2 nearly complete.

What our method is not immune to are nonlinear effects
like the dependence of the mean residue ellipticity on the helix
chain length or the 3-sheet length or width (Woody, 1969;
Madison & Schellman, 1972). The fact that including an
empirical chain-length dependence for the helix had little effect
probably means that there are other just as serious effects being
ignored. Furthermore, the number of linear effects that can
be analyzed is determined by the effective rank of the noisy
matrix of the R(A) values, the extent to which the constraints
in eq S and 6 can stabilize the analysis, and the accuracy of
the y(A) data. Thus, although all the types of nonpeptide
contributions can in principle be combined in the remainder
class, the ultimate accuracy attainable with any CD method
will be limited by these contributions, as well as by the non-
linear effects and the wide range of distorted conformations
in globular proteins. Success will partly hinge on the
“averaging out” of these extra effects over the large number
of residues so that they are not very different from those in
some of the other reference proteins. This may not be the case
for proteins (particularly small polypeptides) with very peculiar
amino acid compositions and with structures very different
from all the reference proteins.

The susceptibility to this last problem should decrease as
the number, and especially as the variety, of the reference
proteins increases (i.e., as NV, increases). We observed a
gradual but clear trend toward decreased accuracy as N, was
decreased, and we expect the converse to hold. Variety should
be especially important. For example, when ribonuclease A
was analyzed, 50% of its y(A) in eq 2 was the R(A) of ribo-
nuclease S, whose v = 0.84 was 5 times larger than any of
the other v values; the converse was also true. Thus, a ref-
erence protein with a structure similar to the one being ana-
lyzed tends to be automatically selected with a large 4. The
ability of the method to perform a stable analysis with a large
and varied set of R()A) spectra is therefore very important. A
possible new R(A) can easily be screened with the same pro-
cedure that we used for Tables I and II. If the new R(A) leads
to worse accuracy (as thermolysin and subtilisin BPN’ did),
it should not be used. The accuracy should also improve by
increasing the accuracy of the CD spectra and by extending
the spectra down to about 165 nm (Brahms & Brahms, 1979,
1980).

A consistent classification system for computing the F values
from the X-ray atomic coordinates is essential. We also ob-
tained good results for the helix and 8 sheet by using the F
values of Levitt & Greer (1977) for those classes, although
these F values for 3 sheet were often much larger than those
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of Chang et al. (1978). This means that internal consistency
is of prime importance. A version of the algorithm of Levitt
& Greer (1977) tuned to the needs of CD could be very useful.

Finally, it should be noted that we had the advantage of
another internal consistency: the CD spectra of the protein
being analyzed and of the reference proteins came from the
same laboratory. Obviously, careful calibration of the in-
strument and perhaps a test spectrum of one of the reference
proteins will be important.
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Appendix

Justification and Use of Eq 4. Ordinary least squares (eq
4 with o = 0) is widely used because the Gauss—Markov
theorem (Silvey, 1975) shows that, of all linear unbiased
methods, it is the best in the sense that it yields the v values
with the minimum expected variance from the true values.
Nevertheless, a large IV, or nearly linearly dependent R(X)
spectra in eq 2 can make the least-squares estimates hopelessly
unstable to experimental error. In view of the optimal prop-
erties of least squares, it is widely believed that the only way
of reducing this instability is to reduce N, even at the expense
of having a totally inadequate model. However, Hoerl &
Kennard (1970) have shown that there always exists a linear
estimator (analogous to a > 0 in eq 4) that yields + values
with smaller variance than least squares. These estimates are
biased (i.e., the expectation values of the v values are not the
true values) and therefore are not covered by the Gauss—
Markov therorem.

We can get a clearer justification of eq 4 with some addi-
tional assumptions that are reasonable for CD data. Generally,
we have no a priori knowledge of the composition of y(A) in
terms of the R(X) values in eq 2. It is therefore reasonable
to assign the same (unknown) a priori probability distribution
to each of the y values. (If we did not, then we would be giving
an unjustified preference to some of the v values.) This is the
principle of exchangeability (Lindley & Smith, 1972). We
take the mean of this distribution to be ¥ = 1/N, since, from
eq 3 and 5, the v values must sum to 1. If we further assume
that the v values and the yg4(\) values are normally dis-
tributed, then the Bayesian estimator (Lindley & Smith, 1972)
for the » values is just eq 4 with & = ¢,%/0.,%, where ¢, and
o,? are the variances of the v and pue(A) values, respectively.
Even without assuming normality, eq 4 is formally just or-
dinary least squares with our prior assumptions about the mean
and variance of the v values added as “data”.

In practice, we do not know ¢,%/.? a priori, and there have
been many procedures proposed for automatically choosing
the optimum « during the analysis (Draper & Van Nostrand,
1979). When a = 0, the variance of the fit to the data (the
first term in eq 4) is minimal, but the 4 values are generally
unreliable because their instability to the experimental errors
is maximal. As « increases, the variance of the fit mono-
tonically increases, and the effective number of degrees of
freedom (Provencher, 1979), which is analogous to the number
of free parameters in an ordinary least squares, monotonically
decreases. Usually, the variance of the fit increases slowly at
first and then rapidly as a becomes so large and the degrees
of freedom so few that the model is no longer flexible enough
and the v values are too strongly biased toward ¥ = 1/N,.
The aim is to choose the « that represents the optimum com-
promise between flexibility and stability, thereby yielding the
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best v values. We use a rough hypothesis test on the relative
increase of the variance of the fit as « increases (Provencher,
1979) to choose o. The automatic choice of « is very im-
portant; o tends to adapt itself to the CD spectrum being
analyzed. For example, if the data are especially precise or
the spectrum requires more degrees of freedom to be ade-
quately represented by eq 2, then a smaller « is automatically
chosen. The method also produces rough confidence regions
for the f values (Provencher, 1979).

In this appendix, we have ignored some complications that
were not essential to the discussion or conclusions, e.g., the
constraints in eq 5 and 6 and the experimental errors in the
R()) values. Also, as required by the Gauss-Markov theorem,
a weighting matrix can be introduced into eq 4 to account for
correlations or unequal variances in the experimental errors.
Similarly, we can incorporate extra a priori information by
weighting the individual terms in the second sum in eq 4. For
example, if we knew that the protein being analyzed (e.g.,
ribonuclease A) was structurally similar to some of the ref-
erence proteins (e.g., ribonuclease S), then we could give these
+ values more freedom by weighting the terms more lightly
in the second sum, or, if there were only one such protein, we
could perhaps increase its 4. However, this would be usually
difficult to do objectively and quantitatively, and we have not
done it here. We have found that the v values of proteins
structurally similar to the one being analyzed automatically
tend to be large anyway, without any added information.
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